3.536 \(\int \frac {c+d x+e x^2+f x^3}{x^3 \sqrt {a+b x^4}} \, dx\)

Optimal. Leaf size=300 \[ \frac {\left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\sqrt {a} f+\sqrt {b} d\right ) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} \sqrt [4]{b} \sqrt {a+b x^4}}-\frac {\sqrt [4]{b} d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{a^{3/4} \sqrt {a+b x^4}}-\frac {c \sqrt {a+b x^4}}{2 a x^2}-\frac {d \sqrt {a+b x^4}}{a x}+\frac {\sqrt {b} d x \sqrt {a+b x^4}}{a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {e \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{2 \sqrt {a}} \]

[Out]

-1/2*e*arctanh((b*x^4+a)^(1/2)/a^(1/2))/a^(1/2)-1/2*c*(b*x^4+a)^(1/2)/a/x^2-d*(b*x^4+a)^(1/2)/a/x+d*x*b^(1/2)*
(b*x^4+a)^(1/2)/a/(a^(1/2)+x^2*b^(1/2))-b^(1/4)*d*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1
/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1
/2)+x^2*b^(1/2))^2)^(1/2)/a^(3/4)/(b*x^4+a)^(1/2)+1/2*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(
b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(f*a^(1/2)+d*b^(1/2))*(a^(1/2)+x^2
*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(3/4)/b^(1/4)/(b*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 300, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1833, 1252, 807, 266, 63, 208, 1282, 1198, 220, 1196} \[ \frac {\left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\sqrt {a} f+\sqrt {b} d\right ) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} \sqrt [4]{b} \sqrt {a+b x^4}}-\frac {\sqrt [4]{b} d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{a^{3/4} \sqrt {a+b x^4}}-\frac {c \sqrt {a+b x^4}}{2 a x^2}-\frac {d \sqrt {a+b x^4}}{a x}+\frac {\sqrt {b} d x \sqrt {a+b x^4}}{a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {e \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{2 \sqrt {a}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x + e*x^2 + f*x^3)/(x^3*Sqrt[a + b*x^4]),x]

[Out]

-(c*Sqrt[a + b*x^4])/(2*a*x^2) - (d*Sqrt[a + b*x^4])/(a*x) + (Sqrt[b]*d*x*Sqrt[a + b*x^4])/(a*(Sqrt[a] + Sqrt[
b]*x^2)) - (e*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(2*Sqrt[a]) - (b^(1/4)*d*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x
^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(a^(3/4)*Sqrt[a + b*x^4]) + ((Sq
rt[b]*d + Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b
^(1/4)*x)/a^(1/4)], 1/2])/(2*a^(3/4)*b^(1/4)*Sqrt[a + b*x^4])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1252

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m
 - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]

Rule 1282

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(f*x)^(m + 1)*(a
 + c*x^4)^(p + 1))/(a*f*(m + 1)), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + c*x^4)^p*(a*e*(m + 1) -
c*d*(m + 4*p + 5)*x^2), x], x] /; FreeQ[{a, c, d, e, f, p}, x] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p]
|| IntegerQ[m])

Rule 1833

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[((c*x)^(m + j)*Sum[Coeff[Pq, x, j + (k*n)/2]*x^((k*n)/2), {k, 0, (2*(q - j))/n + 1}]*(a + b*x^n)^p)/c^j, {
j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rubi steps

\begin {align*} \int \frac {c+d x+e x^2+f x^3}{x^3 \sqrt {a+b x^4}} \, dx &=\int \left (\frac {c+e x^2}{x^3 \sqrt {a+b x^4}}+\frac {d+f x^2}{x^2 \sqrt {a+b x^4}}\right ) \, dx\\ &=\int \frac {c+e x^2}{x^3 \sqrt {a+b x^4}} \, dx+\int \frac {d+f x^2}{x^2 \sqrt {a+b x^4}} \, dx\\ &=-\frac {d \sqrt {a+b x^4}}{a x}+\frac {1}{2} \operatorname {Subst}\left (\int \frac {c+e x}{x^2 \sqrt {a+b x^2}} \, dx,x,x^2\right )-\frac {\int \frac {-a f-b d x^2}{\sqrt {a+b x^4}} \, dx}{a}\\ &=-\frac {c \sqrt {a+b x^4}}{2 a x^2}-\frac {d \sqrt {a+b x^4}}{a x}-\frac {\left (\sqrt {b} d\right ) \int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx}{\sqrt {a}}+\frac {1}{2} e \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x^2}} \, dx,x,x^2\right )+\left (\frac {\sqrt {b} d}{\sqrt {a}}+f\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx\\ &=-\frac {c \sqrt {a+b x^4}}{2 a x^2}-\frac {d \sqrt {a+b x^4}}{a x}+\frac {\sqrt {b} d x \sqrt {a+b x^4}}{a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {\sqrt [4]{b} d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{a^{3/4} \sqrt {a+b x^4}}+\frac {\left (\sqrt {b} d+\sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} \sqrt [4]{b} \sqrt {a+b x^4}}+\frac {1}{4} e \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^4\right )\\ &=-\frac {c \sqrt {a+b x^4}}{2 a x^2}-\frac {d \sqrt {a+b x^4}}{a x}+\frac {\sqrt {b} d x \sqrt {a+b x^4}}{a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {\sqrt [4]{b} d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{a^{3/4} \sqrt {a+b x^4}}+\frac {\left (\sqrt {b} d+\sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} \sqrt [4]{b} \sqrt {a+b x^4}}+\frac {e \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^4}\right )}{2 b}\\ &=-\frac {c \sqrt {a+b x^4}}{2 a x^2}-\frac {d \sqrt {a+b x^4}}{a x}+\frac {\sqrt {b} d x \sqrt {a+b x^4}}{a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {e \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{2 \sqrt {a}}-\frac {\sqrt [4]{b} d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{a^{3/4} \sqrt {a+b x^4}}+\frac {\left (\sqrt {b} d+\sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} \sqrt [4]{b} \sqrt {a+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.15, size = 148, normalized size = 0.49 \[ -\frac {c \sqrt {a+b x^4}}{2 a x^2}-\frac {d \sqrt {\frac {b x^4}{a}+1} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-\frac {b x^4}{a}\right )}{x \sqrt {a+b x^4}}-\frac {e \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{2 \sqrt {a}}+\frac {f x \sqrt {\frac {b x^4}{a}+1} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {b x^4}{a}\right )}{\sqrt {a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x + e*x^2 + f*x^3)/(x^3*Sqrt[a + b*x^4]),x]

[Out]

-1/2*(c*Sqrt[a + b*x^4])/(a*x^2) - (e*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(2*Sqrt[a]) - (d*Sqrt[1 + (b*x^4)/a]*H
ypergeometric2F1[-1/4, 1/2, 3/4, -((b*x^4)/a)])/(x*Sqrt[a + b*x^4]) + (f*x*Sqrt[1 + (b*x^4)/a]*Hypergeometric2
F1[1/4, 1/2, 5/4, -((b*x^4)/a)])/Sqrt[a + b*x^4]

________________________________________________________________________________________

fricas [F]  time = 0.51, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x^{4} + a} {\left (f x^{3} + e x^{2} + d x + c\right )}}{b x^{7} + a x^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)/x^3/(b*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/(b*x^7 + a*x^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {f x^{3} + e x^{2} + d x + c}{\sqrt {b x^{4} + a} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)/x^3/(b*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)/(sqrt(b*x^4 + a)*x^3), x)

________________________________________________________________________________________

maple [C]  time = 0.18, size = 293, normalized size = 0.98 \[ -\frac {i \sqrt {-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {b}\, d \EllipticE \left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, x , i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {a}}+\frac {i \sqrt {-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {b}\, d \EllipticF \left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, x , i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {a}}+\frac {\sqrt {-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}+1}\, f \EllipticF \left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, x , i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {e \ln \left (\frac {2 a +2 \sqrt {b \,x^{4}+a}\, \sqrt {a}}{x^{2}}\right )}{2 \sqrt {a}}-\frac {\sqrt {b \,x^{4}+a}\, d}{a x}-\frac {\sqrt {b \,x^{4}+a}\, c}{2 a \,x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^3+e*x^2+d*x+c)/x^3/(b*x^4+a)^(1/2),x)

[Out]

f/(I/a^(1/2)*b^(1/2))^(1/2)*(-I/a^(1/2)*b^(1/2)*x^2+1)^(1/2)*(I/a^(1/2)*b^(1/2)*x^2+1)^(1/2)/(b*x^4+a)^(1/2)*E
llipticF((I/a^(1/2)*b^(1/2))^(1/2)*x,I)-1/2*c*(b*x^4+a)^(1/2)/a/x^2-d*(b*x^4+a)^(1/2)/a/x+I*d/a^(1/2)*b^(1/2)/
(I/a^(1/2)*b^(1/2))^(1/2)*(-I/a^(1/2)*b^(1/2)*x^2+1)^(1/2)*(I/a^(1/2)*b^(1/2)*x^2+1)^(1/2)/(b*x^4+a)^(1/2)*Ell
ipticF((I/a^(1/2)*b^(1/2))^(1/2)*x,I)-I*d/a^(1/2)*b^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(-I/a^(1/2)*b^(1/2)*x^2+1)
^(1/2)*(I/a^(1/2)*b^(1/2)*x^2+1)^(1/2)/(b*x^4+a)^(1/2)*EllipticE((I/a^(1/2)*b^(1/2))^(1/2)*x,I)-1/2*e/a^(1/2)*
ln((2*a+2*(b*x^4+a)^(1/2)*a^(1/2))/x^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {f x^{3} + e x^{2} + d x + c}{\sqrt {b x^{4} + a} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)/x^3/(b*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)/(sqrt(b*x^4 + a)*x^3), x)

________________________________________________________________________________________

mupad [B]  time = 5.85, size = 118, normalized size = 0.39 \[ \frac {f\,x\,\sqrt {\frac {b\,x^4}{a}+1}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {1}{2};\ \frac {5}{4};\ -\frac {b\,x^4}{a}\right )}{\sqrt {b\,x^4+a}}-\frac {c\,\sqrt {b\,x^4+a}}{2\,a\,x^2}-\frac {d\,\sqrt {\frac {a}{b\,x^4}+1}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {3}{4};\ \frac {7}{4};\ -\frac {a}{b\,x^4}\right )}{3\,x\,\sqrt {b\,x^4+a}}-\frac {e\,\mathrm {atanh}\left (\frac {\sqrt {b\,x^4+a}}{\sqrt {a}}\right )}{2\,\sqrt {a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x + e*x^2 + f*x^3)/(x^3*(a + b*x^4)^(1/2)),x)

[Out]

(f*x*((b*x^4)/a + 1)^(1/2)*hypergeom([1/4, 1/2], 5/4, -(b*x^4)/a))/(a + b*x^4)^(1/2) - (c*(a + b*x^4)^(1/2))/(
2*a*x^2) - (d*(a/(b*x^4) + 1)^(1/2)*hypergeom([1/2, 3/4], 7/4, -a/(b*x^4)))/(3*x*(a + b*x^4)^(1/2)) - (e*atanh
((a + b*x^4)^(1/2)/a^(1/2)))/(2*a^(1/2))

________________________________________________________________________________________

sympy [C]  time = 6.33, size = 126, normalized size = 0.42 \[ - \frac {\sqrt {b} c \sqrt {\frac {a}{b x^{4}} + 1}}{2 a} + \frac {d \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{4}, \frac {1}{2} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} x \Gamma \left (\frac {3}{4}\right )} - \frac {e \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{2}} \right )}}{2 \sqrt {a}} + \frac {f x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**3+e*x**2+d*x+c)/x**3/(b*x**4+a)**(1/2),x)

[Out]

-sqrt(b)*c*sqrt(a/(b*x**4) + 1)/(2*a) + d*gamma(-1/4)*hyper((-1/4, 1/2), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*
sqrt(a)*x*gamma(3/4)) - e*asinh(sqrt(a)/(sqrt(b)*x**2))/(2*sqrt(a)) + f*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,),
 b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4))

________________________________________________________________________________________